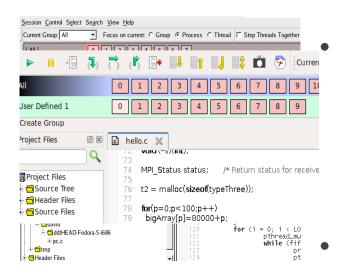
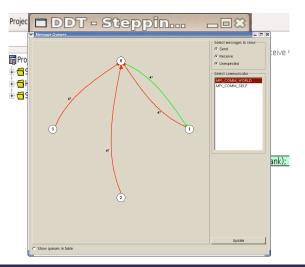

Debugging the Future with DDT at ORNL

David Lecomber david@allinea.com

Interesting Times ...

- Processor counts growing rapidly
- GPUs entering HPC
- Large hybrid systems imminent
- But what happens when software doesn't work?

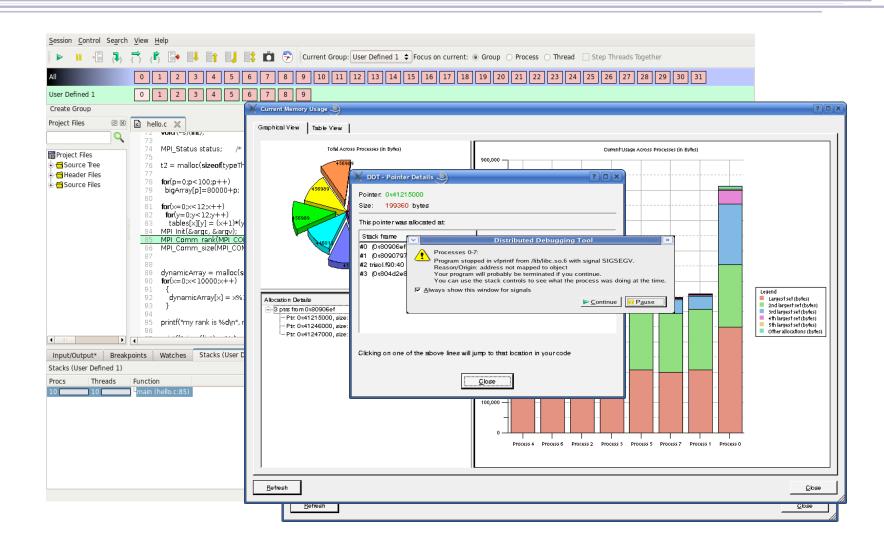




About Allinea

- A company focussed on HPC tools
 - DDT the easiest tool for debugging parallel codes at every scale
 - OPT instruments code to find bottlenecks
 - DDTLite plug-in for Visual Studio 2008
- Significance of previous graph?
 - Everyone aspires to have code running on more cores
 - No-one can debug whole-machine jobs on any of these systems
 - How many systems next year …?

DDT for everyone

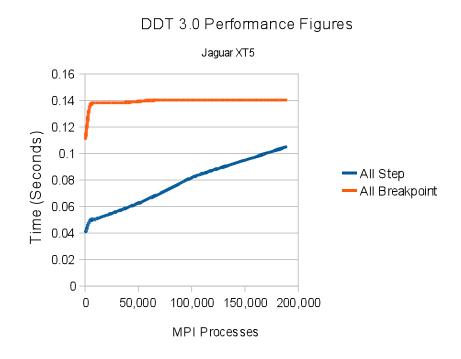


Scalar features

- Advanced C++ and STL
- Fortran 90, 95 and 2003: modules,
 allocatable data, pointers, derived types
- Memory debugging
- Multithreading & OpenMP features
 - Step, breakpoint etc. one or all threads
- MPI features
 - Easy to manage groups
 - Control processes by groups
 - Compare data
 - Visualize message queues (not Cray!)

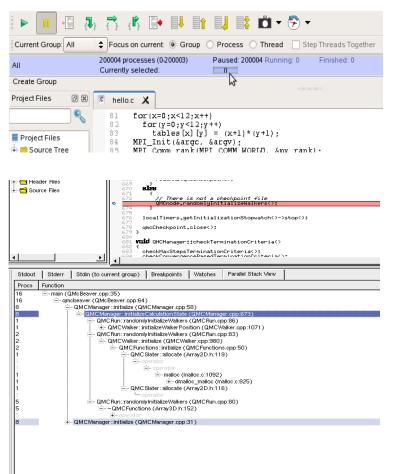
Memory Debugging

Full-strength Debugging

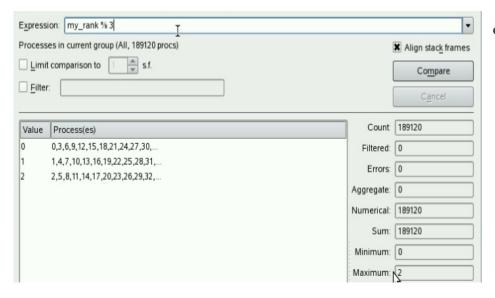

- Many benefits to graphical parallel debuggers
 - Large feature sets for common bugs
 - Richness of user interface and real control of processes
- Historically all parallel debuggers hit scale problems
 - Bottleneck at the frontend: Direct GUI → nodes architectures
 - Linear performance in number of processes
 - Human factors limit mouse fatigue and brain overload
- Are tools ready for the task?
 - Allinea is changing the game!

Petascale Tools Project

- Allinea is developing a petascale debugging tool
 - Production Grade debugger
 - Multi-year project with usable intermediate results
 - Commenced June 2009 showing results already
- Building a multi-level tree for debugging
 - One tool from 1 to 250,000 cores
 - Goal of logarithmic performance scaling
- Scaling all aspects of debugging
 - Step, attach, data checking, ...
 - Many challenges ahead!

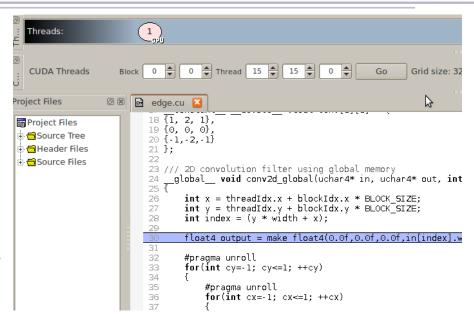

DDT: Petascale Debugging

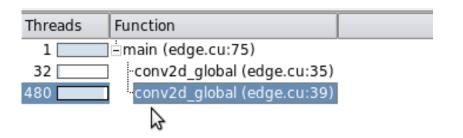
- DDT is delivering petascale debugging today
 - A collaboration with ORNL on Jaguar Cray XT
 - Tree architecture logarithmic performance
 - Many operations now faster at 220,000 than previously at 1,000 cores
 - ~1/10th of a second to step and gather all stacks at 220,000 cores


Scalable Process Control

- Control Processes by Groups
 - Set breakpoints, step, play, stop etc. using user-defined groups
 - Scalable process groups view
 - Compact representation
- Parallel Stack View
 - Finds rogue processes faster
 - Identifies classes of process behaviour
 - Allows rapid grouping of processes

Presenting Data, Usefully


- Gather from every node
 - Potentially costly if all data different
 - ... easy if values mostly same
 - New ideas
 - Aggregated statistics
 - Probabilistic algorithms optimize performance – even in pathological case
 - With a fast and scalable infrastructure, new things become possible
 - Watch this space!


Where Next?

- DDT is the first Petascale debugger...
 - A debugging tool has finally caught up with the hardware!
 - Work is in progress to port every feature for scale
 - Memory debugging, data visualization,
 - How can the infrastructure be built upon?
 - Does DDT offer the right framework for collaboration?
 - Can we encourage a codebase of user-generated MPI tools/utilities?
- ... but large clusters are a fraction of HPC
 - Most parallel development starts smaller
 - Is now starting even smaller: GPUs

CUDA Threads in DDT

- Run the code
 - Browse source
 - Set breakpoints
 - Stop at a line of CUDA code
 - Stops once for each scheduled collection of blocks
- Select a CUDA thread
 - Examine variables and shared memory
 - Step a warp
 - View all extant threads in parallel tree view

DDT and ORNL

- DDT 2.4.1 installed and waiting for you!
 - "module load ddt" on Jaguarpf
 - DDT will submit job for you
- Q4 2009
 - Official DDT 2.5 release: some performance improvements
 - ~16-32k cores
 - Private ORNL access to latest DDT development
 - Much faster process control and data comparison able to reach 100k cores and higher easily
- H1 2010
 - Further development
 - Scalable memory debugging and data export
 - DDT 3.0 stable release with performance to 250,000 cores

